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Introduction

During the last ten years, daylighting has become an in-
creasingly important consideration for lighting designers,
architects, and building owners. Besides the amenities that
daylight offers,” it may significantly contribute to the re-
duction of electric lighting loads, especially in commercial
buildings, where the largest portion of the lighting require-
ments occurs during the day. However, it is important that
daylight admittance is controlled to prevent glare and nega-
tive impacts on cooling loads.’

As with electric lighting design, successful daylighting
design requires means for predicting the luminous perfor-
mance of fenestration systems. In other words, we need to
predict daylight’s contribution to the illuminance and lumi-
nance of interior surfaces. Daylight must be of sufficient
quantity and quality for building occupants’ visual comfort,
visual performance, and aesthetic needs. Consideration of
additional design criteria, such as thermal comfort and ener-
gy/cost implications, requires means for predicting the ther-
mal performance of fenestration systems, so designers can
balance and optimize the contribution of fenestration sys-
tems to lighting and thermal loads.

Background

There are two major methodologies for predicting the ef-
fects of fenestration systems on interior illuminance distri-
butions. One is based on experimental techniques using
scale models and the other is based on mathematical model-
ing through computer simulation. While experimental
techniques with scale models have proven very effective for
the prediction of the luminous performance of fenestration
systems, they are time consuming and inflexible for the
purposes of parametric studies. Also, high quality photo-
melric measurements require significant investment in ap-
propriate instrumentation. Moreover, such techniques do
not allow the prediction of the thermal performance of fen-
estration systems. This is because they can only provide
information about the illuminance and luminance of interi-
or surfaces, and not on the total radiant flux transmitted and
absorbed by the fenestration system. Mathematical model-
ing through computer simulation can be very fast and flexi-
ble, limited by the assumptions included in the theoretical
models and the availability of suitable computer facilities.
The accuracy of these assumptions is critical for the case of

fenestration systems that incorporate optically-complex
components, such as various shading devices, which scatter
the incoming radiation and distribute it over the entire out-
going hemisphere.

Ideally, we could combine the strengths of experimental
procedures and mathematical modeling for accurate, fast,
and flexible prediction of both the luminous and thermal
performance of fenestration systems. In this paper we de-
scribe such a methodology, which can be applied for the
prediction of the luminous and thermal performance of any
fenestration system. Also, we partially demonstrate the
usefulness and the potential of our methodology using ex-
perimentally determined transmittance coefficients of com-
monly used Venetian blinds to compare the total transmit-
ted luminous flux under various sky and ground conditions
for horizontal and vertical orientation of the slats.

Methodology

The major innovation of our methodology is the repres-
entation of fenestration systems as electric lighting fixtures
of varying output. This representation is achieved through
detailed analysis of the radiant behavior of fenestration sys-
tems, encoded in the form of detailed solar-optical proper-
ties. We then treat each fenestration system as a “black
box™ of known radiant behavior; that is, we ignore the radi-
ative phenomena within the fenestration system since we
know the patterns of alteration at its borders."

Solar-optical properties

In general, the radiant behavior of any object can be de-
scribed as a function of the incoming and the outgoing di-
rections of radiation and the wavelength of the radiation.
While a complete spectral analysis would be most appro-
priate for describing the radiant behavior of fenestration
systems, at this stage of the development of our methodol-
ogy we are considering only the visible and the total solar
spectra.

Definitions of solar-optical properties

Considering the possible combinations of single incom-
ing and outgoing directions, and of the incoming and out-
going hemispheres, we define several solar-optical proper-
ties [Figure 1]:*

Directional hemispherical transmittance, 1(8;,{;) (or re-
flectance, p(6;,(;), is defined as the ratio of transmitted (or



reflected) flux collected over the entire hemisphere to essen-
tially collimated incident flux incoming from the direction
specified by the angles 6; and ;.

Bihemispherical transmittance, T (or reflectance, p), is
defined as the ratio of transmitted (or reflected) flux collect-
ed over the entire hemisphere to the incident flux from the
entire hemisphere.

Bidirectional transmittance, 1(8,,(,,0;,(;) (or reflectance,
p(8,,5,,0:,0.), is defined as the ratio of transmitted (or re-
flected) flux collected over an element of solid angle sur-
rounding the outgoing direction specified by the angles 6,
and {, to essentially collimated incident flux incoming
from the direction specified by the angles 6; and .

Hemispherical-directional transmittance, 1(8,,(,) (or re-
flectance, p(8,,C,)), is defined as the ratio of transmitted (or
reflected) flux collected over an element of solid angle sur-
rounding the outgoing direction specified by the angles 6,
and £, to the incident flux from the entire hemisphere.

The bidirectional solar-optical properties provide the
most detailed description of the radiant behavior of fenestra-
tion systems. All of the other solar-optical properties can
be calculated from the bidirectional ones, by integration of
the directional coefficients over the incoming and/or out-
going hemispheres.

Determination of solar-optical properties
To determine the thermal performance of a fenestration

system it is necessary to know its bihemispherical trans-
mittance and absorptance. To determine the luminous per-
formance of a fenestration systems it is necessary to know
its hemispherical-directional transmittance and reflectance.
Since these properties involve the entire fenestration-facing
hemisphere, they are functions of its luminance distribu-
tion which changes continuously during the day. Thus, it
is appropriate to determine the directional-hemispherical
and bidirectional solar-optical properties of fenestration sys-
tems and then integrate them over the luminance distribu-
tion of the fenestration-facing hemisphere. To measure
such solar-optical properties we have developed two meas-
uring facilities: an integrating sphere that measures direc-
tional-hemispherical transmittance’ and a scanning radiome-
ter that measures bidirectional transmittance and reflec-
tance.”

For fenestration systems that incorporate more than one
component (layer), for example a glazing layer and a shad-
ing device layer, we determine the total system properties
from the properties of their layers, through appropriate
computation.”” This approach eliminates the need for
measuring the solar-optical properties of all possible com-
binations of layers and, most important, it provides infor-
mation about the absorbed radiation by layer, which cannot
be determined from the bidirectional solar-optical properties
of the whole fenestration system.

Directional Hemispherical
Incident Incident
Hermispherical Hemispherical
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Directional Hemispherical
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Directi Directional
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Figure 1~The concepts of the directional-hemispherical (A), bihemispherical (B), bidirectional (C), and hemispherical-directional (D) transmittance.
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Figure 2—~The experimental and computational process of simulating the luminous and thermal performance of fenestration systems.

. Simulation of performance

Once the bidirectional solar-optical properties of a fenes-
tration system are known, they can be integrated over the
fenestration-facing hemisphere to yield the total transmiited
and absorbed radiation as well as the outgoing candlepower
distribution for the particular luminous distribution of the
fenestration-facing hemisphere.

For operable fenestration components, such as Venetian
blinds, we measure the solar-optical properties for many
different setups, such ag different slat angles for Venetian
blinds, since each device setup has unique radiant behavior.
To simulate the hourly luminous and thermal performance
of an operable fenestration system throughout a full daily
cycle, we select the properties for each hour that correspond
to the appropriate device position based on its operational
strategy.

A daylight analysis computer model™ and a thermal anal-
ysis computer model" then produce the appropriate input
for an energy analysis computer model”, The entire exper-
imental and computational process, shown in Figure 2,
includes validation stages using our sky simulator” and our
Mobile Window Thermal Test (MoWiTT) facility.’®

Application Example
In order to partially test and demonstrate the usefulness

and the potential of our methodology, we applied it to de-
termine the total transmitted luminous flux through an op-
erable slat-type shading device under various sun, sky and
ground conditions.

Slat-type shading devices are among the most popular in
commercial buildings. Previous simulations of their radi-
ant performance have been based on geometrical model-
ing."""*"**" " Such modeling incorporates assumptions
about the slats’ geometry and reflectance. Usually, slats
are assumed to be flat with perfectly diffusing finish, while
in reality they are usually curved, like Venetian blinds, and
most commercially available slat finishes have a substan-
tial specular component to their reflectance.

The slat-type shading device that we used was a Venetian
blind system composed of 1 inch wide aluminum slats
with a semi-specular grey finish of approximately 40 per-
cent reflectance. The distance between the slats was 0.75
inches. We measured the directional-hemispherical trans-
mittance of the Venetian blinds and then used the measured
coefficients to simulate the total transmitted flux during
typical winter and summer days for several window orienta-
tions. To further demonstrate the importance and the ne-
cessity of detailed solar-optical properties for performance
simulation, we used the same measured data in two differ-
ent simulations, to examine the performance differences be-
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The slat angles of the Venetian Blinds that were considered for the directional-
hemispherical transmittance measurements.

tween blinds with horizontal slats and blinds with vertical
slats.

Experimental procedures

Using our large integrating sphere,” we measured the di-
rectional-hemispherical transmittance of a 2 ft x 2 ft sam-
ple of the Venetian blinds. Measurements were taken for
five slat angles downwards from the fully open position.
These were 0 degrees (fully open position), 15 degrees, 30
degrees, 45 degrees, and 60 degrees [Figure 3]. The in-
coming directions covered were at intervals of 15 degrees in
both the relative azimuth, {, and the incident angle, 0
[Figures 4 and 5].

The results from the measurements are shown in Figure
6. From these figures we can see that the transmittance
can vary significantly (between approximately 0.1 and 0.9),
depending on the direction of the incoming radiation and, of
course, on the slat angle of the Venetian blinds.

The same transmittance coefficients were used to model
the performance of both horizontally and vertically oriented
slats, for vertical windows. With horizontal orientation of
the slats, the sky directions correspond to relative azimuths
0 degrees through 90 degrees and 270 degrees through 360
degrees, while the ground directions correspond to relative
azimuths 90 degrees through 270 degrees. With vertical or-
ientation of the slats, the sky directions correspond to rela-
tive azimuths 0 degrees through 180 degrees or 180 degrees
through 360 degrees (values are symmetrical), the rest cor-
responding to the ground directions.

Computational procedures

For the purposes of this study we assumed that the shad-
ing devices would be adjusted to always block direct sun-
light penetration with slats as open as possible. We consi-
dered both continuous and stepped tilting of the slats at 15
degrees increments. Two kinds of comparisons were made
for horizontal and vertical orientations of the slats:

» comparison of the slat angles for solar blocking and

« comparison of the total transmitted daylight flux.

The angle of the slats gives information about the poten-

tial of the shading system to provide view. The total day-
light flux transmitted indicates the potential for daylight
contribution to lighting needs and the impact of solar heat
gain on heating and cooling loads.

The simulation was performed for every daytime hour of
a typical winter day (February 12th) and a typical summer
day (July 2nd). For the winter day we examined two differ-
ent ground reflectance values, one for grass/soil (0.2) and
one for snow (0.8). The weather data were from Madison,
Wisconsin. Since we assumed that shading systems are
used to control direct solar radiation, only clear-sky lumi-
nance distributions were considered, and the slats were re-
tracted when the sun was not in the fenestration-facing
hemisphere. Five different orientations were examined:
north, northeast, east, southeast and south. The southwest,
west and northwest orientations were not examined, be-
cause they are symmetrical to the southeast, east and north-
east, with respect to the relative positions of the sun and
the fenestration system.

For the hourly performance simulation, the transmitted
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Figure 5—Projection of the positions of the luminous source that were con-
sidered for the directional-hemispherical transmittance measurements.
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Figure 6—Directional-hemispherical transmittance coefficients of the
Venetian blinds for 0° (A), 15° (B), 30° (C), 45° (D), and 60° (E) slat angle
downwards from the fully open position.

flux from sky and ground was determined by integration

. over the sky and the ground, using 15 degree intervals for

both relative' azimuth and incident angle. During the inte-
gration we applied directly the measured transmittance coef-
ficients for each angle-dependent sky and ground element.
The transmittance coefficients to be used for the specific
slat angle for each hour were determined by interpolating
between the closest slat angles considered in the measure-
ments. The direct solar illuminance and the luminance dis-
tribution of the sky were calculated according to the proce-
dures followed in the DOE-2.1B energy analysis program.”

Simulation results

Some of the results from the performance simulations
considering continuous tilting of the slats are shown in
Figures 7 and 8, for east and south orientation respec-
tively, where the bar charts show the total luminous flux
transmitted through horizontal and vertical slats (left scales)
and the line charts show the angle of the slats from the ful-

* ly open position (right scales).

It should be noted that the results of these simulations
are for the purposes of demonstrating our methodology and
have not been validated with measurements of the actual
performance under real sky and ground conditions. This
was our first attempt to combine detailed solar-optical
properties with analytical procedures and it was not meant
to provide a complete, accurate analysis of the performance
of Venetian blinds.

The results from the simulation show that the total
transmitted flux through a fenestration system indeed de-
pends strongly on the combined consideration of the lumi-
nance distribution of the fenestration-facing hemisphere and
the radiant behavior of the fenestration system. This be-
comes obvious especially for the cases where both vertical
and horizontal slats are fully open, transmitting different
luminous flux. In some cases, as, for example, during the
summer midday hours for south orientation, the signifi-
cantly tilted vertical slats transmit more daylight than the
fully open horizontal slats. This emphasizes the impact of
the luminance distribution of the fenestration-facing hemi-
sphere, combined with the directional transmittance of the
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Figure 7—Transmitted fluxes and slat angles for an east-facing window during a typical winter day (A),
a typical winter day with snow on the ground (B), and a typical summer day (C), considering con-
tinuous tilting of the slats. The terms hor flux and ver flux refer to the transmitted fluxes and the terms
hor slat and ver slat refer to the slat angles, for horizontal and vertical orientation of the slats, respectively.

fenestration system.

Another powerful feature of our ap-
proach is the capability of differentiat-
ing between the various radiation
sources, in this case between the sun,
the sky, and the ground. This capabili-
ty contributes greatly to our under-
standing of the fenestration system’s
performance. Figure 9, for example,
contributes to our understanding of the
summer midday differences for south
orientation, indicating that these are
mainly due to the transmitted direct
sunlight, through interreflections be-
tween the slats. The high-altitude
midday summer sun cannot contribute
significantly to the transmitted flux
through the horizontal slats, since it
directly illuminates only a small frac-
tion of the width of each slat. Howev-
er, for the case of the vertical slats, the
operation strategy that tilts the slats
for solar blocking, while trying to
maintain maximum openness, means
that the whole width of each slat con-
tributes to the transmission of direct
sunlight.

Our approach allows for easy deter-
mination of the effects not only of
context parameters, such as ground re-
flectance, but of design parameters as
well, such as the the operation strategy
for operable shading devices. Figure
10 shows the south orientation results
for the stepped tilting of the slats at 15
degree increments, which are almost
identical to the corresponding results
for continuous tilting during the sum-
mer day, but significantly different
from the corresponding results for con-
tinuous tilting during the winter day.

Conclusions and
Future Directions

We described our methodology for
the determination of the luminous and
thermal performance of fenestration
systems of arbitrary complexity, treat-
ing them as electric lighting fixtures of
continuously varying output. We
demonstrated the usefulness and the po-
tential of our methodology using
measured directional-hemispherical
transmittance of commonly used Vene-
tian blinds to determine the total Iumi-
nous flux transmitted for vertical and
horizontal orientation of the blinds’
slats, throughout typical winter and
summer days. Although we intend to
use the total flux properties of fenestra-



tion systems for the determination of
solar heat gain, the total transmitted
luminous flux can also be used with
coefficient-of-utilization methods for
determining work-plane illuminance.

Currently, we are fine-tuning the
measurement and calculation process o
determine bidirectional solar-optical
properties and transmitted candlepower
distributions under any sun, sky and
ground conditions. Using these new
facilities we will create libraries of
measured solar-optical properties for a
large variety of commonly used fenes-
tration components. We will then be
able to simulate the performance of
any combination of fenestration com-
ponents for any application, geograph-
ic location, and orientation of fenestra-
tion.

Although the process of measuring
and organizing such detailed properties
is long, especially for bidirectional
properties, these properties, once deter-
mined, can be used for any daylight ap-
plication. Moreover, the computation
time involved in the analytical routines
is very short, since it involves only
the selection of the appropriate trans-
mittance, reflectance, or absorptance
coefficients, rather than time-
consuming calculation of the radiant
phenomena within the fenestration sys-
tem. Most important, our methodolo-
gy can be used to simulate the lumi-
nous and thermal performance of any
fenestration system, in an accurate and
consistent way.
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Figure 10—Transmitted fluxes and slat angles for a south-facing window during a typical winter day
(A), a typical winter day with snow on the ground (B) and a typical simmer day (C), considering stepped
tilting of the slats. The terms hor flux and ver flux refer to the transmitted fluxes and the terms hor slat
andver slat refer to the slat angles, for horizontal and vertical orientation of the slats, respectively.



